High Performance Components

Highly Loaded Compressor Blades

Lead: Dr. Sankar (Ga Tech)

Collaborators: Drs. Prasad, Dunn, and Neumier

Task Duration: 2 years

Presentation made by Dr. Krish Ahuja

Motivation and Objectives

- Next generation compression systems will have high pressure rise per stage, and will operate closer to stall line than existing systems.
- Active and passive control strategies needed to achieve this loading, without experiencing rotating stall, surge, and other instabilities.

- Use CFD to explore and understand compressor stall and surge
- Develop and test passive (slotted airfoils) and active control strategies (circulation-controlled stator vanes) for centrifugal and axial compressors
- Compare with measurements, where available
- Develop and test control laws jointly with collaborators

Relevance

- High pressure ratios are important for reducing the number of stages in an engine, with attendant reductions in engine weight and size.
- Conventional approaches for engine control rely on interstage bleeding, which reduces the efficiency of the system.
- Research on efficient ways of controlling instabilities is needed for ensuring the safe operation of these systems

Approach

 Select configuration and operating conditions

- Construct the performance map of representative axial compressor configurations
- Use a 3-D compressible Navier-Stokes solver developed by the present investigators

Passive

- Investigate leading edge and trailing edge stall alleviation
- Use slotted airfoils for these configurations.
- Performance penalties at offdesign conditions will be assessed.

Active

 Use trailing edge Coanda jets from the stator vanes as a means of achieving radial variations of the incident flow angles.

Chances of Success

Passive

- Considerable experimental evidence available on the effectiveness of passive blowing via slots and openings
 - Blown Flap
 - Ejectors
- This work fine-tunes the configuration via CFD before Conducting expensive experiments
- Chances of Success: High

Active

- Considerable collective experience at Georgia Tech on Coanda Blowing
- A number of NASA contracts

Chances of Success: High

